Adaptable UAV

UAV innovation: check the new concepts taking hold

Print Email

UAV-Innovation-8sUnmanned aerial vehicles (UAVs) have come a long way since their first deployment, passing from oddity to a commonplace operational necessity. As one of the hottest areas for R&D, manufacturers and defence departments are focusing on perfecting flexibility, endurance and autonomy.

Today, around 90 countries fly military drones, ranging in size from the Global Hawk, with its 40m wingspan, 6,800kg weight and $131.4 million price ticket, right down to the likes of the diminutive 18g Black Hornet costing just $40,000.

With widespread agreement that UAVs are the future of warfare, and the scope of missions they can be tasked with growing apace, they are one of the hottest sectors for R&D as drone manufacturers and defence departments focus on perfecting flexibility, endurance and autonomy.  It seems the age-old trade off between the higher speeds and longer range of fixed-wing aircraft and the flexibility that rotor-wings enjoy to hover, take-off and land vertically may soon be a thing of the past for future drone designers.

Adaptable future

A new concept technology for ‘Adaptable UAVs’ has been unveiled by a team of BAE Systems engineers and Cranfield University students that could see the next generation of military UAVs built to be able to alternate between fixed and rotor flight modes within the same mission.

Envisioned as a donut-shaped fuselage between two fixed wings, this propeller-driven hybrid design is able to be launched and recovered via a special pole that docks with the Adaptable UAV through the central hole in the drone’s body. Using this method, several individual UAVs can be held in a kebab-like stack for release from the ground, surface vessels or submarines, or dropped from larger aircraft in a deployment module hanging beneath a parachute.

By tilting one of its two engines so that they face in opposing directions, the UAV spins around its central axis, effectively turning its wings into a rotor and allowing it to leave the pole. Once clear, tilting the engine back to face forward once again, the aircraft can fly to its destination in a conventional fixed-wing mode, with the option to hover, or re-dock with a recovery pole as required by simply switching to the fore-and-aft-facing engine configuration.

Integrated within the Adaptable UAV itself would be a range of novel technologies, including adaptive flight control and advanced navigation and guidance systems, which will help it fulfil a spectrum of potential missions in complex, cluttered operating environments.

With the rise of military operations in urban areas, and the growing sophistication of air defences, the BAE/Cranfield group think this kind of hybrid drone technology could give tomorrow’s military the kind of edge they will need in future conflicts.

UAV Adaptable UAV BAE Systems Drones Military UAV V-Bat